首页> 外文OA文献 >Forecasting tourism demand by extracting fuzzy Takagi–Sugeno rules from trained SVMs
【2h】

Forecasting tourism demand by extracting fuzzy Takagi–Sugeno rules from trained SVMs

机译:通过从受过训练的SVM中提取模糊的Takagi–Sugeno规则来预测旅游需求

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Tourism demand forecasting has attracted substantial interest because of the significant economic contributions of the fast-growing tourism industry. Although various quantitative forecasting techniques have been widely studied, highly accurate and understandable forecasting models have not been developed. The present paper proposes a novel tourism demand forecasting method that extracts fuzzy Takagi–Sugeno (T–S) rules from trained SVMs. Unlike previous approaches, this study uses fuzzy T–S models extracted from the outputs of trained SVMs on tourism data. Owing to the symbolic fuzzy rules and the generalization ability of SVMs, the extracted fuzzy T–S rules exhibit high forecasting accuracy and include understandable pre-condition parts for practitioners. Based on the tourism demand forecasting problem in Hong Kong SAR, China as a case study, empirical findings on tourist arrivals from nine overseas origins reveal that the proposed approach performs comparably with SVMs and can achieve better prediction accuracy than other forecasting techniques for most origins. The findings demonstrated that decision makers can easily interpret fuzzy T–S rules extracted from SVMs. Thus, the approach is highly beneficial to tourism market management. This finding demonstrates the excellent scientific and practical values of the proposed approach in tourism demand forecasting.
机译:由于快速增长的旅游业对经济的贡献,旅游需求预测引起了人们的极大兴趣。尽管已广泛研究了各种定量预测技术,但尚未开发出高度准确和可理解的预测模型。本文提出了一种新颖的旅游需求预测方法,该方法可从训练有素的支持向量机中提取模糊的高木-杉野(TS)规则。与以前的方法不同,本研究使用从旅游数据上经过训练的SVM输出中提取的模糊T–S模型。由于符号模糊规则和支持向量机的泛化能力,所提取的模糊TS规则具有较高的预测准确性,并为从业人员提供了易于理解的前提条件部分。以中国香港特别行政区的旅游需求预测问题为例,对来自九个海外来源的游客入境量的实证研究表明,该方法与支持向量机具有可比性,并且与大多数来源的其他预测技术相比,可以实现更好的预测准确性。研究结果表明,决策者可以轻松地解释从SVM中提取的模糊T–S规则。因此,该方法对旅游市场管理非常有益。这一发现证明了该方法在旅游需求预测中的极好的科学和实用价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号